Counting chains in the noncrossing partition lattice via the W-Laplacian

نویسندگان

چکیده

We give an elementary, case-free, Coxeter-theoretic derivation of the formula hnn!/|W| for number maximal chains in noncrossing partition lattice NC(W) a real reflection group W. Our proof proceeds by comparing Deligne-Reading recursion with parabolic characteristic polynomial W-Laplacian matrix considered our previous work. further discuss consequences this geometric theory spherical and affine Artin groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chains in the Noncrossing Partition Lattice

We establish recursions counting various classes of chains in the noncrossing partition lattice of a finite Coxeter group. The recursions specialize a general relation which is proven uniformly (i.e. without appealing to the classification of finite Coxeter groups) using basic facts about noncrossing partitions. We solve these recursions for each finite Coxeter group in the classification. Amon...

متن کامل

Chains in the lattice of noncrossing partitions

The lattice of noncrossing set partitions is known to admit an R-labeling. Under this labeling, maximal chains give rise to permutations. We discuss structural and enumerative properties of the lattice of noncrossing partitions, which pertain to a new permutation statistic, m(a), defined as the number of maximal chains labeled by 0. Miibius inversion results and related facts about the lattice ...

متن کامل

Counting complements in the partition lattice, and hypertrees

A partition n = {A,, . . . . A,) of the set [n] = { 1, . . . . n} is an (unordered) family of nonempty subsets A,, . . . . A, of [n] which are pairwise disjoint and whose union is [n]. We call the Ai the blocks of rc, and let 1x1 =m. A partition {B,, . . . . B,} is a refinement of {A,, . . . . A,} if each Bj lies in some Ai. It is well known (but of no relevance in this paper) that the ordering...

متن کامل

Shellability of Noncrossing Partition Lattices

We give a case-free proof that the lattice of noncrossing partitions associated to any finite real reflection group is EL-shellable. Shellability of these lattices was open for the groups of type Dn and those of exceptional type and rank at least three.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.02.023